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By Boa-Teh Chu
SUMMARY

The spproximate formula of & linearlized solution for the pressure
field generated by a moderate rate of heat release is given. The anal-
ogles between the pressure waves genersted by heat release and those
generated by (1) mass release, (2) piston motion, or (3) a two-dimensional
body in a supersonic stream are established analyticelly. The exact
solution of an idealized problem in which a finite smount of heat is
released uniformly at a section of a tube with a given rate, large or
small, is also constructed. Though this idealized setup can be only
approximately fulfilled in practice, the analysis does give an answver
to a fundamental question: Given the rate of heat release at a section
of a tube, how strong is the shock wave generated? A simllar analysis
is made for the pressure waves generated by a point source in three
dimensions., Scme applications of the theory are given.

INTRODUCTION

One of the basic problems in combustion serodynamics 1g: What are
the dynamic effects produced in a medium as & result of heat release in
the medium? Ir particular, how strong are the pressure waves generated
by heat relesse and to what extent are they important in a specific
problem? Such questions arise naturally in the study of the spreading
of autoignition, the trensient development of detonation wave, ignition
by compression, and many other time-dependent problems. The problem of
estimating the pressure generated by heat release also occurs in other
fields, for example, in the study of spark discharge and thermelly driven
acoustical oscillation as well as of the mechanical effects ("blast™)
produced in an atomic explosion (ref. 1).

The basic mechenism by which pressure waves are produced by heet
addition is simply this: VWhen heat is added to a volume of gas, the
density of the gas is, in general, reduced. This causes an expansion
of the volume occupled by the heated gas. The expansion of this volume
produces the pressure waves.
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To see this in a more quantitative mammer, it is necessary to write
down the fundamental equations governing the motion of the gas. Iet

r, 0, T, and T be, respectively, the pressure, density, temperature
and velocity vector of the flow, all being some functions of the position

>
vector r and time t. ILet R and C; %bYe the gas constant and apecific

heat at constant volume of the gas, both of which will be assumed constant
in this preliminery study. The equations of continuity, mowmentum, and
energy sare :

1 Dp = 1a
th+V.? o) (12)
-
Da , 1
= }+ = = 0 b
bt v SR (1v)
Y
D ) _qr,t)
Ov Dt(lose p7> ST ()

where ]—)]%t- represents the Stokes'! derivative and q(?,t) is the rate

of heat release per unit mass of the medium at '? and at the instant +.
When heat is added into the medium from an external source, g may be
considered as given and equations (la), (1b), and (le) together with the
equation of state o

form a system of four equations which govern the four unknowns p, o,
T, and e

Now 1t ie observed that the rate of expansion of a given volume v

_ -
of gas conslidered as a free body is measured by f 2.2 ds vwhere s is
5

the bounding surfeace of the volume and T 1is the outward-drasm normal.

Hence, by Gauss' theorem, it is also equal to
f v . .'l_J.) dv
v

It then follows immediately from continuity equation (la) that whenever
there is a change of density <% %E) there will be & change of the
volume. Now, when heat is added to the medium, there will, in genersal,
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be a change of pressure and density in accordance with energy equa-
tion (1le). (The relative amount of pressure change and density change
resulting from heat addition can in principle always be determined in
any specific problem by solving equations (1) Jointly.) The change in
density produces & change in volume occupied by the heated gas, which
in turn generates the pressure waves.

Tt should be remarked that when heet is not added into the medium
from external sources but is released by the fluid particles themselves
the rate of heat release q must be considered as unknown and an addi-
tional equation is required to describe its variation. In combustion,
qQ 1s usually given as a function of the local temperature. In other
cases, the rate of heat release of the fluid particles 1s specified.

In any event, the system of equations (1) will then be considerably
more complicated than 1t appears to be.

Finally, one notes that the term Cy logeC§%> in equation (1lc) is
directly relasted to the entropy of the gas by the formule

S - 8o = C, log, [@’EX%?] (2)

where the subscript o denotes some reference state and S 1s the
entropy of the gas.

For a moderate rate of heat release, the system of equations (1)
can be linearized. The linearized theory is given in the following
section where a "reduction theorem" is derived which enables one to
reduce the problem of heat release In & tube to an equivalent problem
of piston motion. An application of this reduction theorem to the
one-dimensional case is given In the section entitled "APPIICATION OF
REDUCTTON THEOREM." When the rate of heat release is high, the
linearized theory is no longer valid. In the section entitled "EXACT
SOLUTION, " an exact solution is obtained for the case vwhen heat is
released uniformly at & sectlon of the tube at a constant rate (large
or small). The corresponding problem in three dimensions 1s given in
the section entitled "THREE-DIMENSIONAI THEORY." Socme applications of
the theory are also given.

The present investigation was conducted at the Department of Aero-
nautics of The Johns Hopkins University under the sponsorship and with
the financial assistance of the National Advisory Committee for Aero-
nautics. The author is greatly indebted to Drs. Francis H. Clauser and
Ieslie S. G. Kovasznay for a few stimulating discussions and for their
encouragement and to Dr. M. V. Morkovin for his interest and comments.
The asuthor would like to acknowledge his gratitude to Dr. Harold Mirels
of the NACA Iewis Flight Propulsion Isboratory who made several most
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interesting suggestions. He 1s also grateful to Miss Ingeborg Busemann
who carrled out some of the calculations and to Migss Vivian O'Brien and
Mrs. Sture Kerlsson for theilr assistance in the preparation of the

manuscript.
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SYMBOILS

cross-sectionsl area of & tube
veloclity of sound

specific heats at constant volume and constant pressure,
regpectively

energy per unit volume

some arbitrary functions

step function
& characteristic length
Mach number

mass injJected per unit volume per unit time

normal to a control surface

pressure

rate of heat release, energy/sec
constant rate of heat release (egs. (L46))

heating value of a mixture, energy/mass
rate of heat release per unit mass, energy/mass/sec
gas constant of a mixture

radlsl distance

distance between fleld point and source point —
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7 radius vector

Ta raedius of contzect surface

rq radius of spherical shock wave

S entropy

S¢ transformetion velocity (i.e., flame speed)

8 bounding surface of volume v

T temperature

T temperature tending to « in such manner that
p¥T* = Constant

t time

U superficial velocity of a piston (see eq. (15))

u velocity (in one-dimensional case)

'3 velocity vector

Ua velocity of contact surfece

u. radial velocity (in three-dimensionsl case)

uy velocity of flow immediately behind shock

Vg velocity of propaegetion of shock wave

v volume enclosed by control surface

X,¥,2 Cartesian coordinate of & point

@ rate constant in parsbolic heat-release law, equa-

tion (47), energy/sec
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increment of or change of
d=function in one dimension
S~function in three dlmensions

any number, value of x

vector normal to side of tube
coordinates of source point
density

density tending to zero in such a manner that
p¥I* = Constant

rate of heat release per unit areas, energy/area/sec
constant rate of heat release per unit area (eq. (20))

rate of heat release at x = §, energy/area/sec

state at contact surface

undisturbed state (1.e., that shead of shock wave)
except in case of variables representing rate of
heat release w and § (see list of main synmbols)

state immediately behind shock wave (which is also
that immedietely shead of flame front in one-
dimensional case)

state immedlately behind flame front

LINEARIZED THEORY AND SOME ANAIOGIES

Consider a medium in & uniform state with pressure p,, density p,,
and temperature T,. After the heat is added, the pressure, density,
temperature, and velocity induced can he written as
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P =P, + Bp (32)
p=py+ Bp (3p)
T =T, + 5T (3c)
d =57 (3d)
If the rate of heat release is not too high, §2, EE, o1 and ISEI‘<< 1
P’ P’ To’ 8

where a, 1s the speed of sound in the undisturbed medium. Equations (1)
can then be linearized and

aa_t(ge> F V.5 =0 (ba)
a%(af{) + 8g2 v(%—o) =0 (%)

3 /P 9 /Bp\ _ Q(?,t)
siom)  5eloc) = e (ke
@. E’. = §_T.. (L4)

Po Po . To

Eliminate 8p/p, from equations (ka) and (4e):

9 (%p 2.4
at<7p0) *Vv.ou Cpto )

The equations governing the pressure and veloclty fields are then given
by equations (4b) and (5). Once the pressure field is known, the density
and temperature field can be determined from equations (kc) and (4d) and
the entropy spottiness from the linearized form of equation @),

S _% _, 50 (6)

Cy Po Po

_ak
CoToo
vhere I is some characteristic length in the problem, for example, a
length characterizing the dimension of the heating zone.

It is now clear that "moderate rate of heat release" means << 1
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Tt 1s interesting to note that as far as the pressure and velocity
fields are concerned, the governing equstions (egs. (5) and (4b)) ere of
the same form - In the linearized spproximation - as those which govern
the pressure and velocity fields produced by injecting fluld (isen-
tropically) into the medium. For, in the latter case, the momentum
equation in the linearized form is the same as equation (4b) while the
linearized contlnulty equation is given by

9 f3p a_m(}),t!
at(?po)+v.5u— e (7)

where m is the rate at which fluid (measured in mess/volume/second)
is introduced into the mediwm. TIn fact, all one has to do to get the
same pressure and velocity filelds for the two cases 18 to maich the
perameter q/CpTo with m/po. This suggests that the nolse generated

in e nonuniform combustion (e.g., in turbulent combustion) will radiate
as & source field when exemined at & large distance away from the com-
bustion region. (It is not known if any experiment has been carried
out in the study of this phenomenon.)

If 50 1s eliminated from equations (5) and (4b) the pressure field
is found to satisfy the wave equation

)y o

It is clear from equation (8) that the pressure produced by heat addition
depends upon the rate of heat release, and whenever there is a change of

rate of heat release there will be pressure waves generated, a fact which
one should have expected in the first place.

Now consider the gases contained in & tube. The x-axis will be
chosen parallel to the axls of the tube. The heat added to the
medium q(x,y,z,t) 1s assumed to be given for t > 0. For © 20,
a(x,y,2z,t) 1s assumed to be identically zero. Now eince

>}

a(x,y,2,%t) =f a(e,y,2,t) 8(x - &) dag (9)

w00

and equation (8) is linear (so that the superposition principle is valid),
it is clearly sufficient to analyze the effect of heat release when

a(x,y,2,t) = -53—'- o(y,z,t) 5(x - &), that is, when heat is added only at
o

the section x = &. The quantity w(y,z,t) hae a physicel meaning of
its own. It is the heat generated per unit area per unit time at the
section x = &, for
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L[]ﬁa)(y,z,t) dy dz = Total heat generated at x = £ 1in unit time

where the integration 1s taken over the cross section of the tube at

x = £. Mathematically, this amounts to finding the elementary solution
of equation (8), for once the pressure field produced by ofy,z,t) sat

x = £ 18 known, the general case of heat release by arbltrarily distrib-
uted sources q(x,y,2z,t) can be obtained by replacing the term o{y,z,t)
in the formulas found for the pressure and velocity field with
poq(é,y,z,t) dé¢ and integrating them from € = -» to .

By & translation of the coordinate axes the pleane at which heat is
added can be made to be the plene x = 0. The pressure field produced
by heat released at the plene x = 0 will then satisfy the differential
equation

32 fep) _ 2 (EP_ _ 3 |oly,z,8)8(x)
a.@@Po) 5o V2 )’Po) ot ;OCPTO (10)

and the boundary condition

at the wall of the tube. (Here 7V stands for the normal vector to the
side of the tube.) Equation (11}, according to equation (4b), is an
equivaelent statement of the requirement that there should be no flow
across the wall of the tube. If it 1s further assumed that initially
at t = 0 there are no disturbances inside the tube, there are also
the initial condltions

O =

The solutlion of the above problem can be facilitated with the ald of the
"reduction theorem" given below.
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Reduction Theorem

Iet heat be released at a section x = 0 of a tube of constant
cross section and of infinite length at a rate of w(y,z,t) units of
energy per unlt area per unit time. The pressure and velocity fields
generated as a result of this heat release are identical to those pro-
duced by two pistons at x = Of moving away fram each other (along the

axis of the tube) with the same superficial velocity LE; 1 “&y;z’t).
o

In this manner, the problem of pressure waves generated by heat
release 1s reduced to a problem of piston motion. This reduction
enables one to make use of the result of known theories (e.g., ref. 2)
for the problem at hend. It is possible to generalize the theorem to
a8 tube of, for example, finite length. This will be discussed later.
The proof of the reduction theorem is very similer to that used in
deriving the "impulse method" of solving a nonhomogeneous wave equstion.
(See, e.g., ref. 3.)

Proof of Reduction Theorem

First of all, observe that every solution of equation (10) will be
a solution of the homogeneous wave equation at all points except x = 0,
since 8(x) = 0 for x # 0. Next perform an integration of equation (10)
with respect to x from -e %o ¢ and then let e—0. If it is

32 (ap ) 32 fop 32 (ap
assumed that ——fj<—=— S ==}, and ———) are bounded near x = 0
dt2\7Po/” 3y2 7Po)’ dz2 7Po) ?

a condition which can certainly be satisfied if (y,z,t) is a function
smooth enough in y, 2z, and t, equation (10) becomes

e 2(o8 %2 2.3__81, =_a_“-’(y,z:t) 1
8 (ax ypo)x=0+ + 8¢ (ax 7Po)x=0_ 3 t[ pOCPTO] ( 3)

By symmetry, Sp/')rpo is an even function of x so that 1t is sufficient
to consider the pressure field in the region x > 0 only. Also, by

o () -e2)

= so thet equation (13) can be
ox 7P0 /y=0- "Po/ =0+

written sirmply as

(.5_ ?>_P_) - - L 1[7 - 2 w(yl»)z"“)] (13s)
ox ”Po %= 28.0 dt o
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In other words, if B3dp/yp, 1s a solution of equation (10), 1t must also
satisfy condition (13%a) as x—O+. Consequently, the solution Bp/ypo

of equation (10) satisfying conditions (11) and (12) must satisfy the
homogeneous wave equation

) - -

for x>0 as well as conditions (11), (12), and (13a). But the
pressure fileld In the region x > 0 produced by a piston at x = O+
moving with a superficial velocity

U(y,z,t) = L= oy,2,t) (15)
2y Po

in the x-direction will precisely satisfy equations (11), (12), (13a),
and (14) for x > 0.1 Moreover, since the pressure field generated by
a moving piston is uniguely determined in the linearized theory, it is
also the only solution which satisfies equations (11), (12), (13a), and
(14). Consequently, the pressure fleld generated by heat relesse and
piston motion must be ldenticel. The veloecity produced by heat relesse
and by piston motion are also identical for x > 0, since in both cases
the velocity and pressure are relsted by formula.(hb) and

a§-‘-’—->+v.aﬁ’=o
ot\7Po

in this region. (Cf. eq. (5) and observe that q(x,y,z,t) =

éL o(y,2,t)5(x) and &(x) = 0 for x# 0. Hence q =0 for x # 0.)
o

This completes the proof of the reduction theorem.

It is clear from the sbove proof that the same conclusion will
hold for tubes with nonuniform cross sections which are symmetrical
about the plene x = 0. It also holds for tubes of uniform section of
finite length provided thet it is 1imited to the region shead of the
wave front reflected from the end of the tube. For the most general
case, in which no such restrictions are imposed, & similar but less
gsimple analogy can be constructed. In this case the two pistons will
be moving with different veloclities, end they are so related that not

l'.T.'hat it satisfies equation (13a) follows from the momentum
equation in the x-direction (eq. (4b)), the boundary condition that
there should be no flow crossing the face of the piston, and equa-
tion (15).
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only is equation (13) satisfied but also the condition

<§E— = (QE—) is fulfilled. (The equality of pressure is a
7Po/x=0+ \7P0/x=0-

direct consequence of momentum balance at the section x = O when all
the second-order terms are neglected.) In the next section, applica-
tion of this reduction theorem will be glven.

The reduction theorem was originally formulated as a measns of
reducing a problem of heet addition to a problem of piston motion.
However, the fictitlous plstons described in the theorem actuslly have
a real physical significance. It has been shown in the introduction
that when heat conduction is neglected the flow field resulting from
heat addition into a medium i1s really caused by the volumetric expansion
of the hot gas resulting from the heating. In the case of heat addition
at one plane (say, x = 0}, the rate of this expansion cen be calculsted.
In fact, the faces of the two flctitious pilstons must be precisely the
two interfaces which separate the cool gas from the heated gas, since
they start from x =0t at t =0 &and move out with a speed equal to
the speed of the fluid particle.

Dr. Harold Mirels pointed out that the reduction theorem states
that the pressure and veloclty fields produced by addition of o units
of energy per unit time per unit area are equivalent to those produced
by two pistons at x = Of moving away from each other with velocity

Bu = L_l 2.
2y Po
¥y - 1
However, the rate of work done by such plstons is 2p du = w,

whereas the heat input is w. Thus there are %cu units of energy

apparently unaccounted for. He went on to say that this is due to the
step-function behavior of mass and energy at x = 0 (as can be deduced
for the perticular case discussed in the next section from eguations (22)
to (24)).

A more direct physical explanation of the energy that appesars
"unaccounted for" is the following. The o units of heat energy per
unit ares per unit time added can be divided into two parts: That

esponsible for the setiing up of the pressure and veloclty fields
(which, according to the reduction theorem, must be equal to

2podu = Z;é_i m), and that responsible for heating up the medium. On

the other hand, in the case of the flow field produced by the plston
motion, all the energy goes into the setting up of the pressure and
velocity filelds. The amount of energy that was previously unaccounted
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for must then be the thermal energy stored in the hot gas. This can

be seen from the following calculation. From the reduction theorem,

it is concluded that the flow fields produced by heating and piston
motion are identical up to the faces of the pistons. In the case of
heat addition, the hot gas filled the space between the faces of the
two fictlitious pistons. 1In a time interval ©&t, the increase in volume
of the hot gas 1s 2Abudt, where A 1is the cross-sectional area of the
tube. The internal energy stored in the hot gas is increased (during
the same interval) by 285ust(py + 8p)Cy(To + 8T), that is, by

7—§—I ABudt(py + 8p), or, to the order of the linearized approximationm,

simply by 7—%—T PoBudtA. Hence the rate of increase in the internal

energy stored in the hot gas per unit cross-sectional area at any instant
t 1is 5 f T Podu = > ? T po(72; 1 é%) = %?, which 1s exactly equal to
the amount of energy that appears unaccounted for if only the flow field
produced by the fictitious pistons is examined. (The gbove calculation
1s made for the case = Constant across the crogs-sectional ares of
the tube. For the more general case o = w(y,z,t), the same calculation

applies except that one should write the integral « « « GA Instead

of A in the calculation.)

In the linearized theory presented here, only the effect of com-
presslibility has been taken into account and the effect of heat conduc-
tion has been neglected completely. Linearized theory taeking heat
conductivity into account was recently investigated by Wu (ref. k).

APPIICATTION OF REDUCTION THEOREM

As an application of the reduction theorem, comsider the case
where

(D(Y:z:t) = o(t) (16)

that is, the cage in which heat is uniformly released at the plane x = 0.
According to the reduction theorem, the pressure and veloelty fields
induced are the same as those generated by two pistons at x = Of moving
avay from each other wlth veloclties

u(t) = 1:12—;-33 "’—éii (x7)
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respectively. If the tube conteining the gas 1s of constant cross
sectlon, the pressure and velocity fields produced by the pistons will
be one dimensional, and they are given by the well-known formulas

X
5p =7-l‘”< "E'o_)

for x>0 18a

7Po 2y 80Pq ( )
N aa(t + ai-)

) T 72 2 for x< O (18b)

7Po 4 a‘Opo i
o)

su = 2=2 Q for x>0 (19a)

2y Ps
w(t-+ 33)
su = - L= 1 8o for x< 0 (19p)
2y Po

In particular, if the rate of heat release 1s constant for t > O,
that is,

0 for t+< 0
w(t) = - (20)

Wy for £t >0

or, written in terms of the step function, o(t) = w H(t), the pressure
field is glven by

8 _r-1 % gfp . x for x>0 (21sa)
7Po 2y  agPg ag
5p =7-l°“0Ht+.x_> for x< O (21b)
7Po 2y  agPh, 8o

This shows that, when heat 1s released at & constant rate of w, units

of energy per unit area per unit time intec the medium, two compression

waves of equal strength are generated and propagete awsy from the heating

zone. These compression waves have a strength, measured in terms of the

ratio of pressure Jump dp e&across the wave to the undisturbed pres-

sure Do, equal to Z.%_J: %o . Tt is thue seen that the strength of
asPo

the pressure waves produced by heat sddition to the medium is ususlly

small. (Thus, if g = 10 Btu per square foot per second,
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ag = 1,060 feet per second, and p, = 2,000 pounds per square foot,

then BB = 0.2 x 20X T78
Po 1,000 X 2,000
rate of heat release is high, the pressure waves generated may be quite
intense. However, for a very high rate of heat release the above formulas
can no longer be used. In fact, the formulas is correct only if the non-

dimensional heat-release parameter az; << 1, since it is based on a
o

linearized theory. However, the simplicity of the pressure and veloclty
field predicted from the linesrized theory in the lagt instance leads
one to suspect that an exact solution can be found by replacing the
infinitesimal pressure steps by two shock waves. The main problem is
again to determine the strength of the shock wave, glven the rate of
heat release wo/agPo. This problem will be considered in the next
section.

= 778 x 10-6 = 0.078 percent.) When the

Tt is seen from equations (18) and (19) that the pressure is con-
tinuous at x = 0, but the velocity is discontinuous there, since

(0 = T S5
- 1 w(t)
) 0- = =75~ 5o

The fact that the flow is leaving the section x =0 at both x = O+
and x = 0- leads one to ingquire if all the conservation theorems are
really satisfied at x = 0. (It is certainly obvious that they are
satisfied at all values of x # 0.)

It will now be shown that these laws are indeed satisfied at x = O.
For this purpose it is necessary to calculate the density and temper-
ature field. Integrating equation (4ec) with respect to t,
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By equation (4d),

[, ol -& (%)

(Leyl) . o) + 8(x) j: p::CpTo at for x>0

\/‘t a()8(x) 4. = (23)
0

ﬂ = 2'——_}. a_p. -+
PoCpTo

Ty 7 Do

s oft + X £
(y - 1) ( a'°)-(--8(x) f Y 5r  for x< 0
0

Consider a control surface formed by the planes x =¢e, x = -¢ (where
€ may be any number, large or small), and the segment of wall of the
tube between these planes. Iet A be the cross-sectional ares of the
tube. The conservation of mess and energy can be expressed as

-g%(jne QA d%) = 2p(e,t)ufle,t)A (2ha)
-€

"ab;f_: p(E +%_;__2)A dx| = 2p(e,t)u(e,t)A(E + % u2)

wme F 2p(e,t)ule,t)A -

fe pl:ﬁpi’)- s(xﬂ dx (24D)

-€

Substituting equations (3), (18), and (19) into the above equations and
neglecting the second-order small quantities (in accordance with the
linearized approximation), it is found that equations (24) are indeed
satisfied for all values of €. (By reason of symmetry of the flow field
with respect to x = 0, the momentum equation formulsted for the same
control surface is sutomatically satisfied.) If e 1is teken as an
arbitrarily smsll number, this establishes the validity of the conserva-
tion laws at x = 0. If e 1is chosen large enough to enclose the whole
disturbed fleld, it establishes the valldity of the over-all conservation
laws for the system. Note that these conservation laws will not be
satisfied if the pressure and velocity fields are related to the rate of
heat relesse « in any other menner than by equations (18) and (19).

There are two aspects of this anslysls which deserve some criticism.
First of all, it is clear from equation (23) that, in general, BTVTO
is infinite &t x = 0. This is, in fact, a direct consequence of the
additicn of a finite amount of heat in a plane. Since a "plane of gas"
(instead of & volume) possesses no heat capacity, the temperature must
become infinite. Now, if BT/TO is infinite, the linesrization must
break down at- x = 0 so that the solution really does not represent any
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physical state of affairs at x = 0. Secondly, the density &p/po,
according to equation (22), becomes -» &at x = 0. Here there is not
only an infinity but also a negative density which 1s not even physl-
cally concelvable. It will be seen 1n the next section that the nega-
tive density is really a consequence of linearization.

Degpite the absurdity of the behavior of the soclution at x = 0,2
all the other concluslons derived above, such as the dependence of the
strength of the pressure wave on the rate of heat release (eq. (21)) are
to be trusted because only this dependence will insure the conservation
of energy, mass, and momentum loca at all points as well as for the
whole system (i.e., over-all bala.ni:-zg. This state of affairs will be
clarified when an exact solution is constructed in the next section.

Other evidence which indirectly Justifies the value of this solution
is found when use is made of the gbove solution to get the pressure and
veloeity fields produced by heat sources q(x,t) which are not distrib-
uted in one plane but over a region (volume) of the tube. According to the
rule given (see eq. (9) and the paragraph following it), it is necessary
only to replace x in formulas (18), (19), (22), and (23) by x - ¢
(i.e., perform a translation) and then replace the function w in these
formulaes by poa(&,t) d¢, and, finally, integrate & from -o to w.

Thus, the pressure fleld is given by

5p _ 7y -1 1fx _x -t fm x-£
7Po 2y aopo[i_‘,,J poq(g’t 8o )dg ¥ poq(g,t * 8o )d§

X

But, since q(t,t) = 0 for % £ 0, the last formula can also be written

as
_x - ¢ X - &
E&:Afx J_T._qg’t a°)dg+fx+a°t———-—q<§’t+ a°)dg (25)
7P 2ag Colo CoTo

x-ao'b x

which is well known as the correct solution of the one-dimensional-wave

equation
£<5L _a2232 (R . 3|uxt)
ot2 7Po) o aXZCPo) o3t CPTO

subjected to the initiasl conditions (5—1’-) =0 and [ﬁ- -P-)] =0
7Po/4=0 +=0

o ot \7Po

2T be sure, to begin with, it is physically impossible to add &
finite amount of heat in a plasne (instead of a volume) of gas. However,
this is beside the point because this state of affairs can at least be
approximated in practice.
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Iikewige, the velocity, density, and temperature fields are given by

% qu,t - E_é_i) 1 xt+aob q(g,t + = = g)
8u=-!=f o dg-—f o /gt (26)
2 x-aot CPTO 2 X CPTO .

5o _ 1 fx "'—(g’t - E_;Eg') dg +

Po  2a5lJx.a t CpTo

fx+a0t q.(g;t + 2{-_;'35-) at _ft _q'(_xli;l dt (27)
y Colo o OpTo

§_=Z__lfx q(g’t a“°)c1§+
To 2aq x-agt CpTo
K - g
x+aqt Q(E,t + Big ) ae +\/“ q(x,t) (28)
x CpTo o Cplo

Note thet in the expressions for the temperature (eq. (28)) and density
(eq. (27)) the "“infinities," which were originally contained in expres-
sions (22) and (23), diseppear after superposition.

To get same idea as to the pressure and velocity distributlions inside
a narrow (but nonzero) band of heating zone, a calculation is made for
the case

0 for t< 0; also for t>0 1f [x| >e

Q.(x'; t) =
do for t+ >0 and le~< €

where € i1s some small number. Typicel pressure and velocity distribu-
tions for various times are shown in figure 1.

The solid lines in figure 1 are the pressure and velocity distribu-
tions. The dotted lines are the construction lines. Points between saa'
do not realize the heating zone 1s cut off at x = te and think that it
extends from - .to . By symmetry, therefore, the fluid particle tends
to move toward neither the left nor the right. Hence in this region
du = 0, and the density, by the continuity equation, remains unchanged,
while the pressure increases lineasrly with the temperature (constent-
volume combustion). Points between &b do realize that the heating zone
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is cut off at x = € but do not know if it is also cut off at x = -€.
The pressure and veloclty differ at different points in ab depending
on how much each point knows sbout the conditions at each side of the
point x = €. The same remarks hold for points between a'bt.

Before concluding the discussion of the reduction theorem, one
should mention that when heat is released uniformly at one plane, that
is, o(y,z,t) = o{t), it is possible to construct a third analogy,
namely, that between the pressure waves generated by heat release and a
two~dimensional airfoil in supersonic flow.? For the reduction theorem
shows that the pressure field produced by heat release satisfies the

system of equations (14), (13), (12a), and (12b), which in the present
case become :

32 PP\ _ o232 R
S265:) - = 526 - ° (2ge)
|:3x 7PO):| x=0F ¥ 8.02 Btlja?’ Po:l (290)
op _
(P ° (259
o (op =0 (294)
l:at(s%) £=0

On the other hand, if a symmetrical two-dimensional airfoil y = tf(x)
in a uniform supersonic stream of Mach number M 1is considered, the
pressure field produced by the airfoil satisfies the following set of
equations;

giz(sgo) B Mb2l_ 1 %;5(2%;) =0 (30a)
53(253) y=0t = ¥ g% £(x) (301)

3The author is indebted to Dr. L. S. G. Kovésznay for suggesting
this analogy in the early stage of this analysis.
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(913—)};_0 =0 (30¢)

E§;(§§;§]X=O o -

(According to the momentum equation in the y-direction eq. (30b) is
equivalent to the statement that the flow at the surface of the airfoll
must be tangent to the airfoil. The last two conditions are equivalent
to the)statement that there should be no incomlng waves in the flow
field.

A comparison of equations (29) and (30) shows that there exists an
analogy between the pressure field developed by the uniform heat addi-
tion at a plane and the two-dimensional symmetrical airfoil in a super-
sonic stream. In fact; 1t 1s necessary only to imagine the time coordi-
nate as the space coordinste in the direction of the supersonic stream

and choose M° = 1 + —_ and the shape of the airfoll according to the

802

formula f(x) =2 % 5 o(x)
2y 1+ags Po

EXACT SOLUTION

Iet heat be uniformly released at the section x = 0 of a tube of
constant crogs section and of infinite length at a constant rate of ay
units of energy per unit ares per unit time. (Hence, if the total heat
released per second is @ and the cross-sectional area of the tube is A,
g = Q/A.) When the nondimensional heat-release parameter Wo /BP0  Was

small compared with unity, two compression waves of strength Z—%—£ aﬁ; 3
)

propagating away from each other with the velocity of sound a, of the
undisturbed medium, were found to be generated at x = 0 (see eq. (21)).
When a,/agP, 1s not small, equation (21) is no longer valid. Further-
more, 1t 1s expected that, instead of the two infinitesimal pressure
gteps, two shock waves would be generated. The question is again to
determine the strength of the shock wave generated, given the rate of
heat release per unilt area wag-
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The linearized solution (21), though invalid for = high rate of
heat release, does suggest the following propositions:

(1) The shock waves generated at x = 0 are of equal strength and
will maintain their strength as they propagate away from each other.

(2) The pressure between the two shock waves is uniform and equal
to the pressure immediastely behind the shocks.

(3) The velocity field behind the shock waves is discontinuous at
x =0 and i1s an odd function of x. It is uniform for the regions x >0
and x < O, respectively, and assumes the value of the velocity of the
gas immedlately behind the shock in the region x>0 snd x< 0, :
respectively.

In addition to these propositions, due account will be taken of the
motion of the fluid particles which is neglected in the linearized theory.
It would be expected that:

(4) Two contact surfaces which form the boundaries separating the
hot and cocl gas are generated at x = 0 at the instant when heat is
first added to the medium and move away from each other with the velocity
of the fluld particles.

(5) Since the hot gas originated from a single plane x = 0, the
temperature of the ges between the two contact surfeces must tend to
infinity.

(6) For the same reason, the density of the hot gas between the two
contact surfaces must tend to zero in such & mammer that pT = Constant
In accordance with the ges law pT = p/R and proposition (2).

These propositions can be substantiated by a formel argument based
on dimensional reasoning. The argument goes &s follows: The undisturbed
medium can be characterized by two of its thermodynamic state parameters,
say, the pressure pg, and temperature T,. Since the velocity of

sound a, in the undisturbed medium is uniquely related to the temper-

ature T,, P, and &, will be used as the two parameters characterizing

the undisturbed medium. The strength of the shock wave can be described
in terms of the pressure ratio pj/p, eacross the shock, where p; 1s

the pressure immediately behind the shock. It is clear that, in general,
the strength of the shock wave depends on the rate of heat release per
unit area a,, the state of the undisturbed medium being characterized

by pe and a, as well as by the time t. That is,
P1

Fg = F((no,ao,po,'t) (513)
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Since theé viscous and heat-conductive effects have been neglected in
this preliminary study, these varisbles do not enter into equation (3la).
Also, for uniform heat release in a tube of constant cross section the
flow field is one-dimensional so that the dimension of the tube does not
enter into the problem as & relevant characteristic length. Now equa-~-
tion (31e) must be dimensionally correct. But the four variebles [

DPos &gy, end t can only be combined into & single nondimensionel parsm-

eter, namely, Lo > which does not contain the variable +. Consequently,
o]

= (2 ) (510)
Do &oPo

that is, the shock strength must be independent of the time +t, which
proves proposition (1). Clearly this conclusion is asctually a direct
consequence of the fact that there is neither a characteristic time nor
& relevant characteristic length in the problem.

Iikewise, the pressure, density, temperature, and velocity of the
flow behind the shock waves will be fumctions of Wos &gy DPgos 8nd t.

In addition, they can be functions of the position x. The five vari-
ables Wy, 29, Pg; X, and t can be combined to give two independent

nondimensional parameters, namely, Efb_ and _z%& Therefore,
oPo

- 84
p(x,t) _ ® o _x
o Fe(a ol %t) (322)

u(x,t}

8o

73(a3; 0 =) (32v)

asPo ’ aot

and so forth. TIn other words, the flow field must be "conical." Intro-

ducing & new independent varisble ¢ = ;EE’ it is a simple matter to

ol
reduce the governing partial differential equations (i.e., the continuity,
momentum, and energy equations) to a system of ordinary differential
equations with the independent varieble {. Tt turns out thet this
system can be integrated without difficulty so that explicit solutions
are obtained for the pressure, velocity, temperature, and density fields.
The constants of integration are to be determined from the boundary
conditions at the shock. However, a simpler approach is to assume a
possible flow field which embodies all the features in propositions (1)
to (6) and then to verify that it indeed satisfles all the conservation
laws at all polnts.
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For the purpose of formulation, suppose for the time being that the
strength of the shock waves is known. Then the pressure p3, velocity uj,

temperature T,, and density p; Immediately behind the shocks are also
known. Since the shock strength is invariant with time, Py, w, py,
and Ty will also be independent of time and are therefore constants.

To satisfy proposition (2), assume
p(x,t) = p1 for ’xl < Vgt (33a)
vhere Vg 1s the shock speed. Proposition (3) states that

uy for 0<x< Vgt

u(x,t) = (331p)
-u3 for -Vgt<x< 0

As & consequence of this formuls and proposition (&), the two contact
surfaces which separate the hot and cool gas muet be traveling with the
velocity ¥uy, respectively. (See fig. 2.) Proposition (5) then
requires that

pix for uyt < le < Vgt
T(x,t) = (33¢)

T* for lx‘ < wuyb

where T¥* 18 to be teken as a temperature tending to infinity. Propo-
sition (6) requires that

P1 for wyt< ,xl < Vgt
p(x,t) = (33d)
ford for |x[ <t
where p¥ is ‘to be teken as a density tending to zero in such & menner
that o¥T* = f;.

It is clear that this solution satisfies all the conservation laws
for any shock strength at any point in the flow field except perhsps at
x = 0. For, if the flow field in the region x > 0 at any instant +
is considered, it consists of a shock wave at x = Vgt, followed by a
flow with uniform pressure and veloeity consistent with the shock rela-
tions, and a contact surface at x = ujt, which moves with the fluid
veloclty. Such a flow field certainly satisfies all the comservation
laws in the region x > O. Hence, what must be examined is the question
of whether the conservation theorems are also satisfied at x = 0, If
they are satisfied there, then the comservation theorems for the system
as a whole (i.e., over-all balance) will also be satisfied and the
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converse 1ls also true,

Take a control surface consisting of the planes
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It is precisely thils consideration that deter-~
mines the strength of the shock wave,

x=€, x=—€,

and the segment of the wall of the tube between them. The conclusion
will be the same whether € 1s chosen to be an arbitrarily small number

or a number large enough to include the entire disturbed Ffield.

It 1s

found that the equations representing the conservation of mass and
momentum are always identically satisfied no matter what is the shock
strength, while the energy equation is satisfied 1f and only if the
strength of the shock waves is such that the following condition

=2-1
P = 5

1s fulfilled.
be less than Vgt.

(3k)

These statements can be proved easily if ¢ is chosen to
When € 1e taken to be larger than Vgt the calcu-

lation 1s more involved, since use has to be made of the shock relations.
It will be shown how the calculation proceeds for this more involved
case (which incidently establishes the conservation laws for the system

as a whole).

Take € +to be some fixed number greater than Vgt.

the shock waves will be at x = Vgt

(see fig. 3). The total mass inside
parts: That between the two contact

since p¥* +tends to zero eventually,
the shock wave preceding it 2(Vgt -

wave and the boundery of the control

totael mass inside the control surface is

2ujAtp* + 2(Vgt - mt)Apy + 2(e

Then at time
and the contact surfaces, at x = w3t

the control surface consists of three
surfaces 2ujtAp¥, which is negligible

that between the contact surface and
urt)Apy, and that between the shock

surface 2(e - Vgt)Apo. Thus, the

- Vat)Ap, = 2upatp* + éeApb

where use has been made of the shock relation

P1(Vs = u1) = 0oVs

(1.e., the continulty equation at the shock).

(35)

Now, since

p¥ 1is actually

zero, the total mass contalned in the control surface is invariant with
time for all values of +t and is equal to 2eAp,, the mass contained

inside the control surface before heat is released to the medium. This
demonstrates that the mass is conserved.
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The momentum equation, being a vector equation, is automatically
satisfied by virtue of the symmetry of flow with respect to the
plane x = 0. Then consider the energy balance.

At the instant +, the energy inside the control surface also
congists of three parts. It is given by

1 42 1 4.2
2ul‘tAp*(CvT* + -2- uq ) + 2 (Vst - ult)Apl<Cle + —2' uy ) +
2(c - Vgt)Ap,CyTo = SE7 Dy tA + 2eApgCy T, +

1
PtV (11 + § wa - ot)

since p¥ +tends to zero in such a menner that p¥T¥ = pl/R. Again use
has been made of the continuity equation at the shock (35). The

term Vspoékﬂh_+ % w2 - CvTo) can be converted into pju; if one
makes use of the shock relations

Op(Ty = To) = Veuy - 2w® (36)
Pl - Po = PoVely (37)
o]
()

which are nothing but the energy, momentum, and continuity equations at
the shock. Thus, the total energy contained inside the control surface
at the instant 1t 1is given by

2
> -1 plul'bA + 2€ApvaTo + 2tAplul = 2€Apocho + 7_—Ll- plul'tA

The increase of energy in the control surface from the instant t +o
the instant + + dt i1s therefore (27/7 - 1)pjuiAst where Bt 1is

chosen so small that Vg(t + 8%t) 1s still less than e. But the total
amount of heat released In time + 1s wyASt. Consequently, the energy

will be conserved 1if and only if
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vhich proves equation (34).

One is8 now in a position to relate the shock strength with the rate
of heat released per unit area wg. It 1s well known that the drift

veloelty wu3 produced by & shock wave of strength Pl/Po is

AP .1
1= 7 ) (38)
ag z+l£l+z-l

2y DPg 2y

Substituting equation (38) into equation (34), the following relation is
found between the strength of the shock wave generated and the parameter
of rate of heat release wg/2gPot

(39)

BPo [y +1P1_ y-1

One can then solve the quartic equation for p3/po 1n terms of wy/8cPo-
A plot of pl/po versus mb/adPo is glven in figure 4. Obviously, this
curve hes been constructed by finding the values of wb/aopo for a
sequence of values of PlfPo- The results of this calculation are pre-
gented in the following table:

1 ) P o)
Do &oPo Po 8oPo
2 T.34 10 152.5
L 31.8 15 290.9
6 65.2 50 1,867
8 105.7

Tt 1s interesting that for a very high rate of heat release the strength
of the shock wave veries with ay/agp, &according to a two-thirds law:

P @ \2/3
o = 0.325 (aoPo) (10)




NACA TN 3411 27

(The coefficient 0.325 corresponds to & value of 7 of 1.4k.) Once
Pl/Po is known as & function of @b/aoPo: the complete flow field is

defined and given by equation (33).

Applicetion of the foregoing results to the approximate estimation
of pressure waves generated by autolgnition of a mixture in a tube is
discussed in the sectlion entitled "SOME APPLICATIONS OF THEORY."

THREE-DIMENSIONAL THEORY

In the present section, the linearized theory of pressure waves
generated by heat addition in three dimensions will first be discussed
briefly. Then the construction of an exact solution in three dimensions
which may be useful in predicting the asymptotic strength of the shock
wave generated by a closed flame front expanding uniformiy will be
discussed.

According to the linearized theory, the differential equation
governing the pressure field due to a moderate rate of heat release is
given by equation (8). The solution of equation (8) in an open space
is well known:

© o o t - I
sp(x,y,2,%) _ 1 f f f 13 q(g,n,g, ao) ae an dt (1)
P430) )-I-T(aoz oYY T ot CPTO

where r' = Vgx -84+ (y -2+ (z - )2 is the distance between the
field point (x,y,z) and the source point (&,n,f).

The special case in which heat 1s released at a given point in
space, say the origin of the coordinaste system, 1s of particulsr interest.
This means that

Q(XJY)Z:t) = Q,(t)S(x,y,z) (}4'2)

where &(x,y,z) is the &-function and can be considered as the limit,
as €—0, of the function

0 for X2 + y2 + 22 > &2
= 1 (43)
8(x,y,2) o for X2+ y2 + 22 < €2
= NE

3
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The function Q(t) has the physical significance of being the heat .
release per unit time. Substituting equations (43) into equation (41)
and evaluating the integral,

r
sp(x,y,2,) _ 1 1 |t -55) ()
7Po hﬁaoe r ot| Cplo

where r 1s the distance Vx2 + y2 + z2.

A comparison of equations (21) and (4&) shows that one of the
esgential differences between the one-dimensional and three-dimensional
cases 1s that the pressure waves generated in the former case depend on
the rate of heat release (per unit area) while those generated in the
latter case depend upon the time rate of change of rate of heat release.

In practice, 1t is of some interest to know the pressure and
veloecity flelds produced by the sudden addition of & finite amount of
heat Into the medium. Thus, the flow fleld produced by a spark discharge
is of this nature, although ectuslly a linearized theory will not be
adequate to describe this phenomenon with precision. Assume the varia-
tion of rate of heat release with time as shown in figure 5. In other
words, at +t = O+, the rate of heat release Q(t) increases suddenly
from zero to & very high value and then decreases again to zero in a
short intervel of time. The pressure waves generated, asccording to
equation (4h4), will vaery with the derivaetive of Q(t) and will there-
fore consist of a very steep compression front followed immediately by
an expension-compresslon zone (fig. 6). The velocity field produced
may be calculated from equation (5). The distribution of velocity field
along eny radial line is )

Ir
o1 -55), 1 ot -g) (5)
T 7 g p2 CpTo hxas r 3% CpTo

Thus, the velocity distribution in the immediate neighborhood of the
origin behaves like an incompressible source field. Moreover, the

radial distribution of the velocity there varies like @ (near field in
fig. 6), while that at a large distance awasy bears the seme relationship
with the6§ressure as that existing in the theory of plane wave (far fileld
in fig. .

Next examine the posslbllity of constructing an exact solution in
three dimensions as was done before in one dimension. First, congider
the case in which heat 1s released at a uniform rate of q, units of
energy per second at the origin. As in the preceding section, the
undisturbed medium can be characterized by its pressure p, and velocity



NACA TN 3411 29

of sound &ag. Then the strength of the shock wave generated, measured
in terms of the pressure ratio p1/p, across the shock wave, will, in

general, be a function of Qgy, 855 Po, and time +. That is,

Py _

e = F(Qgs80sPos ) (46a)

Now the four variables Qg, &8g; Py 8nd © can only be combined into

a single nondimensional parsmeter QO/QO3pot2. Since equation (k62) must
be dimenslonally correct, one has

P

|

- Q
(o] - F(;o5pot2

Consequently, in this case the shock strength must be a function of
“time - a fact which complicates greatly the construction of an exact
solution. Since it is physically spparent that increasing the rate of
heat release will increase the strengbth of the shock wave generated, 1t
is concluded from equastion. (46b) that the shock wave generated must
decay with time. A little reflection reveasls immediately that the basic
reason why the shock strength should depend on + 1is the existence of a

(46b)

d

characteristic time ‘/——gg— in the problem. It is also clear immediately
80”Po

that in order to produce a shock wave whose strength is invariant with

time one must add heat to the medium sccording to the law

Q(t) = ot? (47)

where o now has the dimension energy/timeB. For, in thls case, the
rate at which heat is released will be characterized by o and the shock
strength pl/po should be a function of «, agy, Po, 8nd +t Instead.

But the four variebles a, &5, Dy, and t can only be combined into a

single nondimensional parameter o oBPo which does not contain +.
Consequently, the shock strength P1/Po will be a function of a/ioa 3

but not of +t; that is,
51 (48)
PO s 03P°

The construction of en exact solubtion will be attempted for this case.

The "parsbolic law"” (equation (47)) is actually of some practical interest.
Thus, if s spherical flame propagetes into the fresh geg with a constant
speed, the rate of heat generated by combustion i1s proportional to +
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Moreover, if the flame speed is small, the heat may be thought of as
belng released at the center of the sphere.

For the present case, the pressure, velocity, density, and temper-
ature field must be & function of a, &g, Dy, T, and . Just as in

the derivation of eguation (32), a dimensional reasoning leads +to the

result
2 _ & =
z PQ 5 aot> (e)
J° S A S S
8o uQ03p o ’ a.o'b) (ko)

and so forth, so that the flow field is again conical. Tt is also known
that there must be a spherical contact surface behind the shock wave
which separates the heated gas (i.e., the "fireball") from the cool gas
surrounding it. If the positlion of this sphericel contect surface at
any instant +t 1s denoted by its radius r,, then, in general,

re = G(a,80,P0st). In nondimensional form, this equation can be

written as
Te a
=@ (50)
aqt (;0}p;)

so that the contact surface must move out with a uniform velocity, or
the fireball must expand at & uniform rate. Consequently, the flow field
outside the contact-surface will be exactly the same as that produced by

8 solid sphere expanding et a uniform rate of aOG<: ; . But the air
&q”P
o " Po
waves generated by a wmiformly expanding sphere have been solved by
Taylor (ref. 5)% so that the shock strength will be determined as soon
as the rate of expansion of the fireball is relsted with the nondi-
mensional heat-release parameter a/&05p0. To find this relation it is

necessary to construct first a solution which is valld inside the
fireball.

Except at the origin r = 0 vwhere heat is releassed, the fundamental
hydrodynamic equations governing the flow inside the firebell are

hIn fact, the dependence of pressure and velocity field on r and
+ 1in Taylor's solution satisfles precisely requirement (49).
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Op . 1 O /o _
Sur éE%) __.9% 1b
p(it T or or ' (51)
k=N 1.2V, 1 8t 12\ =
VR I
P = PRT (514)

Just as in the preceding section, it is expected that the temperature T
in the fireball tends to infinity, while the density p of the gas there
tends to zero in such e manner that

PT = p/R (52)

If this assumption is made, then continuity equation (51a) is automati-
cally satisfied provided that w, is finite. The momentum equation (51b)

wlll then be satisfied if p 1is independent of r. But according to
equation (49a), if p is independent of r it must also be independent
of . Hence, it 1sg assumed that

P = Pe

where D, 1s the pressure at the contact surface. Finally, since

oT = ERS-, the energy equation will be satisfied provided thet rlu. is

a function of t only. To satisfy equation (49b), 1t is necessary that
ur = (Constent)t?/r2. TIn fact, if ue is the velocity of the contact
surface,

2
%i = <?§%> for r>0

because, 8t r = ro (= uct), U must be equal to u,. (Note that wup
is indeed finlte for all velues of r > 0.) By symmetry, u,. =0 at
r = 0.

Summarizing the results, the flow field inside the contact surface
is given by

P = De (5%a)
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2
EE = (;%?9 far »>0
te (53b)
=0 at r=20
T = T* (53c)
p = p¥ (534d)

where T* +tends to o and p¥*¥ +tends to zero in such a manner than

p¥I* = Pc/R (5"")

Note that inside the fireball the velocity distribution is like an incom-~
pressible source field (Just as that indicated by the linearized solution,

eq. (45)).

Up to now, the conservatlon laws have been satisfied at all points
inside and outside of the fireball, except at the point r = 0 itgelf.
An exemination of the comnservation laws et this point will enable one to
relate the velocity of expansion of the fireball u, and the pressure

in the fireball p; with the heat-release parameter o (see eqa. (55)).
If uc 1s assumed to be known for ‘the time being, Taylor's solution will
then give the shock strenghth Pl/Po and the flow fleld outside the fire-

ball as well as the value of p,. It will be shown that the correctly
agssumed U, must be that which ylelds a pe consistent with equa-

tion (55).

Consider a spherical control surface of radius e about the origin.
Take € 86 small that the control surface lies completely inside the
fireball. 'The continulty and energy equations formulated for this control
surface are:
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The first equation is automatically satisfied since p¥ ultimately tends
to zero. The second equation can be rewritten as

2 .\ 2
uc(EEs) 5 } T Poline2 + pcuc(-gs) bre2 = ot

go that 1t will be satisfied 1f and only if

;Egzi Dole) = & (55)

Finally, the momentum equation is automatically satisfied by virtue of
symmetry. Consequently, all the conservation laws ere satisfied every-
where provided that the flow field outside the fireball is described by
Teylor's solution, that inside the fireball, by equation (53), and equa-
tion (55) is satisfied. It is often more convenient to use the nondi-

mensional form o = haty /29)(29)3 of equation (55).
a03Po 7 - lkPo 8o

The table below is essentially a reproduction (in the notation of
the present paper) of teble I of Teylor's paper (ref. 5), except that one
more columm (the last column) has been added to give the corresponding
velues of ayéo5po in accordance with equation (55). In the table M,

is the Mach number of the contact surface and r; is the radius of the
shock wave. Other notations have already been introduced earlier.

D @ ® | ® |G ® @
M| 1| B e | A 2 <
Te Po 8o Pe o a03p0
0 | mmmme | mmmmme | mmee | e | e 0
21k4.93 1.000 | 0.20% {0.928 | 1.075 .392
RN E-R 0 1.003 | k10! .75 1.295 3.89
.5(1.950} 1.050| .523 | .750| 1.L00 8.73
611763 1.169| .638 | .7h9| 1.569 17.7h
711505} 1.365 ) .61 | .755 | 1.808 3h. T
B l1.392 | 1.629 ) .81 | .T7h| 2.105 6.9
1.0|1.256 | 2.4001!1.180 | .811| 2.959 212
1.2 1.182 | 3.59 |1.520| .8u7| k.250 651
1.4 ]1.135( 5.60 [1.953 | .887| 6.32 2,050
1.6 |1.103 | 9.06 |[2.560 | .917| 9.89 7,230
1.8 11.083 |17.95 [3.598 | .92 | 19.7 40,000
2.1|1.060 o« o .93 ® o
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Column C) of the teble gives the heat-release parameter, while
column (:) gives the strength of the shock wave produced. The dependence
of the shock strength on the heat-release parameter q/ho3po is also

shown in figure 7. Column () of the teble gives the velocity of expan-
sion of the fireball relative to the sound speed in the undisturbed
medium. Column @D gives the pressure inside the fireball. Column C]
gives the ratio of the radii of the spherical shock and the fireball.

SOME APPLICATIONS OF THEORY

Consider first some possible applications of equation (39). It is
clear that in practice there are cases in which heat is released at a
uniform rate in a limited region (or a narrow band) of a tube. If the
axial dimension of this region is small ccmpared with the length of the
tube, equation (39) would be expected to give approximately the correct
strength of the shock wave produced by the heat released. If the tube
ig of infinite length then equation (39) would be expected %o give the
asymptotic value of the strength of the shock wave developed, whatever
is the size of the region at which heat is actuslly released (provided
that this reglon-is finite). A similar idea applies to some ignition
problems. Consider a tube of infinite length containing some combustible
mixture. Suppose that at t = O, for one cause or another, ignition
begins at one section, say at x = 0, of the tube. Thus, the mixture
may have been ignited by a hot surface or a grid, or automatically because
of the existence of & local high-temperature region. A flame is developed

and the combustion will tend to spread out into the fresh gas (see fig. 8).

If the flame spreads out at a uniform rate, the total amount of heat
generated as the result of combustion will be linearly proportional to
time t and the rate of heat release ig therefore constant. Furthermore,
if the flame spreads out at not too high a speed, compared with the
velocity of sound in the surrounding medium, the strength of the shock
wave generated would be expected to be epproximately the same as if heat
had been released at a constant rate at the section x = 0. 1In fact, one
can calculate the strength of the shock waves generated. Thus, supposing
that the two flame fronts propagate away from the ignition plane x = O
with a constant speed S, (the transformation velocity), the total amount

of heat generated in time + 1is 2p;SiAQt where p; 1s the density of

the medium behind the shock waves, A 1is the cross-sectlional areea of the
tube, and Q 1is the heating value of the mixture (in energy per unit
mass). It follows therefore that the rate of heat release per unit area
is constant and glven by

wo = 20158 (56)

.
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and the strength of the shock wave genersted can be solved from.
equation (39)

2 fz_al)

7 - 1 Po\Po _ o PSR

\/74'12_];_'_7-1 &oPo
27 Po 7+1

(57

where pq 18 related to pl/po by the Rankine-Hugoniot relation

1+.'L".'._lp_l
Ao __7-1%
Po  2t1,. 51
7"1 Po

Naturally, one likes to know if this gives the correct answer. ¥ortu-

nately, in the present case there is an independent method of calculating

the strength of the shock waves generated. Note that since the flow field

must be symmetric about the plane x = 0, the same flow field would have

been produced if the tube had been closed off at x =0 (fig. 9). Now

a flame propagating awsy from the end of a tube must generate a shock

wave of such a strength that the boundary condition at x = 0 1s satis-

. fied. TIet the shock wave have the strength P1/Po where p; 1s the
pressure immedistely behind the shock. The shock will then induce &

flow giving rise to a drift velocity (fig. 10)

Ee_é_)
up = 7 \Po

+ 1 - 1
\/} Py, ?
=y S 2y

(58)

where &, 1is the velocity of sound in the medium ahead of the shock

wave. Since the flame is assumed to be propagating with a constant
speed St relative to the medium, it will be seen to propagate with

an apparent speed of wu) + S;. Now the flame itself induces a flow
behind it. From the viewpolint of an observer riding on the flame, the .

P
burned gas is leaving the fleme with a velocity equal to St 323-‘ where

p1 1s the density of the gas ahead of the fleme (i.e., that behind the
shock wave) and po 1s that behind the flame. Hence, fram the viewpoint

of an observer in the laboratory (i.e., one who is fixed with respect to
the undisturbed medium shead of the shock waves), the burned gas will be
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. P
moving eway from the wall x = O with a speed equal to wuj + St ~ Sy E%.

But the boundary conditlion at the wall dictates that the velocity of the
flow at the fixed wall is zero. This condition is satisfied if

u; + S¢ - S g% =0 or

P2

which together with equation (59) determines the shock strength since
pl/p2 is & fixed ratio once the mixture is specified. Now, if wu; 1is

small compared with the velocity of sound a3 in the medium shead of
the flame, a simple consideration of momentum balance at the flame leads
to the result?

- st(f; . ) (59)

P1 = Po ' (60)

Hence, by the gas law, p3/p2 T2/Ty, and equation (59) becomes

st@—i - 1) (61)

w
But consideration of energy balance at the flame front shows that
= Cp(Tz - Ty) (62)
S¢
provided that o< 1. Hence, equation (61) can be written simply as
1

up = %% (63)

Substituting equation (63) into equation (58) and making use of the gas
law, it 1s found that the shock strength Pl/Po must gatisfy the
equation

_ 8o(P1 _ )
7 Pi/A ‘/7 +1p 7 -1
2y Po 2y

JFor proof of ege. (60) and (62), see, e.g., ref. 6 or T.
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which after some simple reductions becomes identical to equation (57).
Thus, 1t is seen that equation (57) indeed glives the correct value of
the strength of the shock wave generated by combustion. The fact that
in this case the shock strength can be predicted exactly by another
method has not made the usefulness of equation (39) less, for, in the
first place, it has strengthened confidence in its spplication to
practical problems, and, secondly, equation (39) cen be applied to many
other cases (some of which have been mentioned at the beginning of this
section) where no other simple means is availsble for estimating the
approximate strength of the shock wave produced. Finally, the corre-
sponding problem in three dimensions can be solved by the theory
developed in the last section.

Mirels suggested thet the condition under which the pressure wave
produced by flame propagation can be found by considering an equal rate
of heat releagse at a fixed station be considered. He noted that the
equivalence of these two approaches is indicated for the planar case
but is assumed for the three-dimensionsl case., (See the statement after
equation (48): "If the flame speed is small, the heat may be thought
of a8 belng released at the center of the sphere.")

In response to this suggestion, the author would like to add that
before any comparison can be made for the three-dimensional case the
exact solution for the flow field generated by 2 uniformly expanding
spherical fleme must be known. This solution can, in fact, be constructed.
Tt may be worth while to point out that, depending on the values of the
Tlame speed and the heating value of the mixture, the flow field may
assume qualitetively different natures. When the flame speed and heating
value of the mixture sre low enough (the present case), the flow field
outside the flame front is similar to that generated by a uniformly
expanding sphere, the speed of expansion of which is related to the flame
speed and the heating value of the mixture. Inside the spherical flames
the medium is at rest. When the flame speed and heating value of the
mixture are high enough, the flow field inside the spherical flame is no
longer entirely at rest. There is now a family of central-expansion
spherical waves following immediately behind the flame front which is
noy propagating at the lower Chapman-Jouguet speed. The flow field
outside of the flame front is still similar to that generated by a
uniformly expanding sphere. When the fleme speed and heating value of
the mixture are extremely high, the flame front catches up with the shock
wave to form a detonation front right after the mixture is ignited. This
last case has been analyzed by Taylor (ref. 8) ard indeperndently by
Doering and Burkhardt (ref. 9). However, all these exact sclutions
cannot be given in closed analytic forms which involve only the elemen-
tary transcendental functions. When the fleme speed is small, the shock
wave generated by the flame 1s extremely weak, mainly because of the
fact thaet the shock wave is propagating into an open space. On the other
hard, the equivalence of the flow field produced by the flame and 2 heat
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source releasing heat at an equivalent parabolic rate is true only when
the flame speed is small. Consequently, 1t does not seem worth while
from the practical point of vlew to look into thls particular example
in any greater detail.

When he was commenting on the equivalence of a flame front and a
heater, the following argument was also advanced by Mirels: It can be
shown for the planer case that the equivalence of the two approaches
requires that the ratio of specific heats be the same for the burned
and unburned geses and that the kinetic-energy terms be negligible. Take
the caese of a flame originating at x =0 at time 4+ = 0. The tx-diagrem
is indiceted in figure 1i(2). The equivalent problem, with heat addition
at section x = 0, 1s& indicated in figure 11(b). Conditions in reglon (1)
of the figures are the same for both cases but conditions in region (2)
differ. In addition, the extent of region (2) is greater in figure 11(a)
then in figure 11(b) since the flame moves faster than does the contect
surface. However, the energy per unit volume of the gas behind the shock
(for a given shock strength) can be shown to be the same for regions (1)
and (2) and for figures 11(a) and 11(b). Neglecting kinetic energy, the
energy per unit volume is

b

E = pC,T =
Ply y = 1

Since p 1s constant behind the shock, the energy per unit volume is
constant provided 7 1s the same for the burned and unburned gases.
Therefore the details of the temperature and density distributions
behind the shock are unimportant. The strength of the shock depends on
the rate of heat addition and the two approzches are equlvalent.

With regard to this discussion, the fact that a flame front and a
heating element are dynamically equivalent6 when the ratio of specific
heats is the same for the burned and unburned gases and when the flame
speed is small compared with the local sound speed was independently
found by the author in his study of the mechanism of generation of pres-
sure waves at a flame front (ref. 10). Actually, the statement is rigor-
ously true only if there 1s a current of flow through the heating element
with velocity equal to the flame speed. The rigorous demonstration will
not be presented here. -

6When the pressure and velocity fields produced in two systems are
identical, the systems are sald to be "dynamically equivalent." Note
that the temperature and density flelds produced in the two systems need
not be the same.
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CONCLUDING REMARKS

When the effect of heat conductivity 1s neglected, the flow field
resulting fram the addition of heat into & medium 1s caused by the
volumetric expension of the heated ges. When the rate of heat release
is moderate, & "reduction theorem" can be derived which reduces the
problem of heat addition in a single plsne in a tube of constant cross
section to & problem of plston motion 1in the tube (the plane of heat
addition being perpendicular to the tube axis). The fictitious plstons
in the theorem correspond in reality to the interfaces which separate
the heated and unheated geses. The solution for the more general case
of heet addition in e region inside the tube can be constructed by
superposition.

The exact solution for the flow field produced by uniform heating
in a plene at a constant rate is also given. In particular, the strength
of the shock waves resulting from such heating 1s calculated in terms of
the (constant) rate of heat release. The formule also gives the asymp-
totic strength of the shock waves resulting from heating at a constant
rate a finite volume of gaseous medium inside en infinitely long tube of
constant cross section.

When the heat is added into the medium at & single point at a rate
proportional to the time squared, the heated gas expands at & uniform
rate, much like a uniformly expanding sphere. Taylor's solution enables
one to calculate the relation between the shock wave produced and the
rate of heat release. This relation also represents asymptotically the
strength of a pressure wave generated by & closed flame front in &
cambustible mixture expanding uniformly at a constant speed which is
small compared with the local sound speed.

The Johns Hopkins University,
Baltimore, Mdi., December 11, 1953.
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